Novel Intergenically Spliced Chimera, NFATC3-PLA2G15, Is Associated with Aggressive T-ALL Biology and Outcome

Nom de la revue
Molecular Cancer Research
Jonathan Bond, Christine Tran Quang, Guillaume Hypolite, Mohamed Belhocine, Aurélie Bergon, Gaëlle Cordonnier, Jacques Ghysdael, Elizabeth Macintyre, Nicolas Boissel, Salvatore Spicuglia, Vahid Asnafi

Leukemias are frequently characterized by the expression of oncogenic fusion chimeras that normally arise due to chromosomal rearrangements. Intergenically spliced chimeric RNAs (ISC) are transcribed in the absence of structural genomic changes, and aberrant ISC expression is now recognized as a potential driver of cancer. To better understand these potential oncogenic drivers, high-throughput RNA sequencing was performed on T-acute lymphoblastic leukemia (T-ALL) patient specimens (n = 24), and candidate T-ALL–related ISCs were identified (n = 55; a median of 4/patient). In-depth characterization of the NFATC3-PLA2G15 chimera, which was variably expressed in primary T-ALL, was performed. Functional assessment revealed that the fusion had lower activity than wild-type NFATC3 in vitro, and T-ALLs with elevated NFATC3-PLA2G15 levels had reduced transcription of canonical NFAT pathway genes in vivo. Strikingly, high expression of the NFATC3-PLA2G15 chimera correlated with aggressive disease biology in murine patient-derived T-ALL xenografts, and poor prognosis in human T-ALL patients. Mol Cancer Res; 16(3); 470–5. ©2018 AACR.