High-resolution dynamic mapping of the C. elegans intestinal brush border

Nom de la revue
Development
Aurélien Bidaud-Meynard, Flora Demouchy, Ophélie Nicolle, Anne Pacquelet, Shashi Kumar Suman, Camille N. Plancke, François B. Robin, Grégoire Michaux
Abstract

ABSTRACT
The intestinal brush border is made of an array of microvilli that increases the membrane surface area for nutrient processing, absorption and host defense. Studies on mammalian cultured epithelial cells have uncovered some of the molecular players and physical constraints required to establish this apical specialized membrane. However, the building and maintenance of a brush border in vivo has not yet been investigated in detail. Here, we combined super-resolution imaging, transmission electron microscopy and genome editing in the developing nematode Caenorhabditis elegans to build a high-resolution and dynamic localization map of known and new brush border markers. Notably, we show that microvilli components are dynamically enriched at the apical membrane during microvilli outgrowth and maturation, but become highly stable once microvilli are built. This new toolbox will be instrumental for understanding the molecular processes of microvilli growth and maintenance in vivo, as well as the effect of genetic perturbations, notably in the context of disorders affecting brush border integrity.