• Accueil >
  • Publications >
  • ALG-2 interacting protein-X (Alix) is essential for clathrin-independent endocytosis and signaling

ALG-2 interacting protein-X (Alix) is essential for clathrin-independent endocytosis and signaling

1 juil. 2016Scientific Reports

DOI : 10.1038/srep26986

Auteurs

Vincent Mercier, Marine H. Laporte, Olivier Destaing, Béatrice Blot, Cédric M. Blouin, Karin Pernet-Gallay, Christine Chatellard, Yasmina Saoudi, Corinne Albiges-Rizo, Christophe Lamaze, Sandrine Fraboulet, Anne Petiot, Rémy Sadoul

Résumé

Abstract

The molecular mechanisms and the biological functions of clathrin independent endocytosis (CIE) remain largely elusive. Alix (ALG-2 interacting protein X), has been assigned roles in membrane deformation and fission both in endosomes and at the plasma membrane. Using Alix ko cells, we show for the first time that Alix regulates fluid phase endocytosis and internalization of cargoes entering cells via CIE, but has no apparent effect on clathrin mediated endocytosis or downstream endosomal trafficking. We show that Alix acts with endophilin-A to promote CIE of cholera toxin and to regulate cell migration. We also found that Alix is required for fast endocytosis and downstream signaling of the interleukin-2 receptor giving a first indication that CIE is necessary for activation of at least some surface receptors. In addition to characterizing a new function for Alix, our results highlight Alix ko cells as a unique tool to unravel the biological consequences of CIE.

Membres

CHRISTOPHE LAMAZE

Directeur de recherche Inserm

CEDRIC BLOUIN

Chargé de recherche Inserm