• Accueil >
  • Publications >
  • Cancer-associated fibroblasts actively compress cancer cells and modulate mechanotransduction

Cancer-associated fibroblasts actively compress cancer cells and modulate mechanotransduction

1 nov. 2023Nature Communications

DOI : 10.1038/s41467-023-42382-4

Auteurs

Jorge Barbazan, Carlos Pérez-González, Manuel Gómez-González, Mathieu Dedenon, Sophie Richon, Ernest Latorre, Marco Serra, Pascale Mariani, Stéphanie Descroix, Pierre Sens, Xavier Trepat, Danijela Matic Vignjevic

Résumé

Abstract

During tumor progression, cancer-associated fibroblasts (CAFs) accumulate in tumors and produce an excessive extracellular matrix (ECM), forming a capsule that enwraps cancer cells. This capsule acts as a barrier that restricts tumor growth leading to the buildup of intratumoral pressure. Combining genetic and physical manipulations in vivo with microfabrication and force measurements in vitro, we found that the CAFs capsule is not a passive barrier but instead actively compresses cancer cells using actomyosin contractility. Abrogation of CAFs contractility in vivo leads to the dissipation of compressive forces and impairment of capsule formation. By mapping CAF force patterns in 3D, we show that compression is a CAF-intrinsic property independent of cancer cell growth. Supracellular coordination of CAFs is achieved through fibronectin cables that serve as scaffolds allowing force transmission. Cancer cells mechanosense CAF compression, resulting in an altered localization of the transcriptional regulator YAP and a decrease in proliferation. Our study unveils that the contractile capsule actively compresses cancer cells, modulates their mechanical signaling, and reorganizes tumor morphology.

Membres

DANIJELA MATIC VIGNJEVIC

Directeur de recherche Inserm

STEPHANIE DESCROIX

Directeur de recherche CNRS