Mechanisms Generating Cancer Genome Complexity: Back to the Future

Nom de la revue
Cancers
Franck Toledo
Abstract

Understanding the mechanisms underlying cancer genome evolution has been a major goal for decades. A recent study combining live cell imaging and single-cell genome sequencing suggested that interwoven chromosome breakage-fusion-bridge cycles, micronucleation events and chromothripsis episodes drive cancer genome evolution. Here, I discuss the “interphase breakage model,” suggested from prior fluorescent in situ hybridization data that led to a similar conclusion. In this model, the rapid genome evolution observed at early stages of gene amplification was proposed to result from the interweaving of an amplification mechanism (breakage-fusion-bridge cycles) and of a deletion mechanism (micronucleation and stitching of DNA fragments retained in the nucleus).