The occurrence of intracranial rhabdoid tumours in mice depends on temporal control of Smarcb1 inactivation

Nom de la revue
Nature Communications
Zhi-Yan Han, Wilfrid Richer, Paul Fréneaux, Céline Chauvin, Carlo Lucchesi, Delphine Guillemot, Camille Grison, Delphine Lequin, Gaelle Pierron, Julien Masliah-Planchon, André Nicolas, Dominique Ranchère-Vince, Pascale Varlet, Stéphanie Puget, Isabelle Janoueix-Lerosey, Olivier Ayrault, Didier Surdez, Olivier Delattre, Franck Bourdeaut

AbstractRhabdoid tumours (RTs) are highly aggressive tumours of infancy, frequently localized in the central nervous system (CNS) where they are termed atypical teratoid/rhabdoid tumours (AT/RTs) and characterized by bi-allelic inactivation of the SMARCB1 tumour suppressor gene. In this study, by temporal control of tamoxifen injection in Smarcb1flox/flox;Rosa26-CreERT2 mice, we explore the phenotypes associated with Smarcb1 inactivation at different developmental stages. Injection before E6, at birth or at 2 months of age recapitulates previously described phenotypes including embryonic lethality, hepatic toxicity or development of T-cell lymphomas, respectively. Injection between E6 and E10 leads to high penetrance tumours, mainly intra-cranial, with short delays (median: 3 months). These tumours demonstrate anatomical, morphological and gene expression profiles consistent with those of human AT/RTs. Moreover, intra- and inter-species comparisons of tumours reveal that human and mouse RTs can be split into different entities that may underline the variety of RT cells of origin.