- Accueil >
- Publications >
- Mechanotransductive cascade of Myo-II-dependent mesoderm and endoderm invaginations in embryo gastrulation
Mechanotransductive cascade of Myo-II-dependent mesoderm and endoderm invaginations in embryo gastrulation
Auteurs
Démosthène Mitrossilis, Jens-Christian Röper, Damien Le Roy, Benjamin Driquez, Aude Michel, Christine Ménager, Gorky Shaw, Simon Le Denmat, Laurent Ranno, Frédéric Dumas-Bouchiat, Nora M. Dempsey, Emmanuel Farge
Résumé
Abstract
Animal development consists of a cascade of tissue differentiation and shape change. Associated mechanical signals regulate tissue differentiation. Here we demonstrate that endogenous mechanical cues also trigger biochemical pathways, generating the active morphogenetic movements shaping animal development through a mechanotransductive cascade of Myo-II medio-apical stabilization. To mimic physiological tissue deformation with a cell scale resolution, liposomes containing magnetic nanoparticles are injected into embryonic epithelia and submitted to time-variable forces generated by a linear array of micrometric soft magnets. Periodic magnetically induced deformations quantitatively phenocopy the soft mechanical endogenous
Equipes

Membres
