Tubulin glycylation controls axonemal dynein activity, flagellar beat, and male fertility

Nom de la revue
Science
Sudarshan Gadadhar, Gonzalo Alvarez Viar, Jan Niklas Hansen, An Gong, Aleksandr Kostarev, Côme Ialy-Radio, Sophie Leboucher, Marjorie Whitfield, Ahmed Ziyyat, Aminata Touré, Luis Alvarez, Gaia Pigino, Carsten Janke
Abstract

Glycylation regulates axonemal dyneins

Physiological functions of the microtubule cytoskeleton are expected to be regulated by a variety of posttranslational tubulin modifications. For instance, tubulin glycylation is almost exclusively found in cilia and flagella, but its role in the function of these organelles remains unclear. Gadadhar
et al.
now demonstrate in mice that glycylation, although nonessential for the formation of cilia and flagella, coordinates the beat waveform of sperm flagella. This activity is a prerequisite for progressive sperm swimming and thus for male fertility. At the ultrastructural level, lack of glycylation perturbed the distribution of axonemal dynein conformations, which may explain the observed defects in flagellar beat.

Science
, this issue p.
eabd4914